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Abstract
The ensemble of L×L power-law random banded matrices, where the random
hopping Hi,j decays as a power-law (b/|i − j |)a , is known to present an
Anderson localization transition at a = 1, where one-particle eigenfunctions
are multifractal. Here we study numerically, at this critical point, the statistical
properties of the transmission T2 for two distinguishable particles, two bosons
or two fermions, in the non-interacting case. We find that the statistics
of T2 is multifractal, i.e. the probability to have T2(L) ∼ 1/Lκ behaves
as L�2(κ), where the multifractal spectrum �2(κ) for fermions is different
from the common multifractal spectrum concerning distinguishable particles
and bosons. However, in the three cases, the typical transmission T

typ
2 (L)

is governed by the same exponent κ
typ
2 , which is much smaller than the

naive expectation 2κ
typ
1 , where κ

typ
1 is the typical exponent of the one-particle

transmission T1(L).

PACS numbers: 71.30.+h, 72.15.Rn, 05.45.Df

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Whereas Anderson localization phenomena [1] are quite well understood for a single particle
(see the reviews [2–4]), the case of interacting particles in a random potential has remained
much more challenging (see the review [5] and more recent works [6–11]). Since the case
of a finite density of particles can be studied numerically only for small system sizes, it is
natural to consider first the simpler case of only two interacting particles (TIP) in a random
potential. In dimension d = 1, where the one-particle model is always in the localized phase
with some localization length λ1, it has been found that the TIP model is also always localized,
but with a localization length λ2 that may become much larger than λ1 [12–21]. In dimension
d = 2, where the one-particle model is again always in the localized phase, the possibility of
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Figure 1. The ensemble of power-law random banded matrices of size L × L can be represented
as a ring of L sites, where the matrix element Hi,j between the sites i and j is a Gaussian variable
of zero-mean Hi,j = 0 and of variance given by equation (2) in terms of the distance ri,j of
equation (1).

a delocalization transition has been studied for short-range interaction [22] and for Coulomb
interaction [23–25].

In the present paper, we are interested in the two-particle transport properties at the
Anderson localization transition of the one-particle problem, where the one-particle eigenstates
are multifractal [2, 4]. We are not aware of the previous studies on this question (see however
[26] concerning the quasi-periodic Aubry–André transition). Since for the tight-binding
model in dimension d = 3, where there exists an Anderson transition, the two-particle model
cannot be studied numerically for large enough system sizes and large enough statistics on the
disordered samples to obtain accurate results, we have chosen to focus here on the power-law
random banded matrices (PRBM) model, and to study numerically the statistical properties of
the two-particle transmission T2.

The paper is organized as follows. In section 2, we recall the PRBM model and
introduce the observables that characterize transport properties for the two-particle model. In
section 3, we describe our numerical results concerning the statistical properties of the
transmission T2 for two distinguishable particles, two bosons and two fermions. Our
conclusions are summarized in section 4. In the appendix, we describe our numerical results
concerning the multifractal properties of the one-particle model as a function of the energy E,
which turn out to be useful to understand the statistics of T2 discussed in the text.

2. Model and observables

2.1. Reminder on the power-law random banded matrices (PRBM) model

Besides the usual short-range Anderson tight-binding model in finite dimension d, other models
displaying Anderson localization have been studied, in particular the PRBM model, which
can be viewed as a one-dimensional model with long-ranged random hopping decaying as a
power-law (b/r)a of the distance r with exponent a and parameter b. The Anderson transition
at a = 1 between localized (a > 1) and extended (a < 1) states has been characterized in [27]
via a mapping onto a nonlinear sigma model. The properties of the critical points at a = 1
have been studied considerably, in particular, the statistics of eigenvalues [28–30], and the
multifractality of eigenfunctions [31–36], including boundary multifractality [37].

More precisely, we consider here the model shown in figure 1, with L sites i = 1, 2, . . . , L

in a ring geometry with periodic boundary conditions. The appropriate distance ri,j between
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the sites i and j is defined as [31]

r
(L)
i,j = L

π
sin

(
π(i − j)

L

)
. (1)

The ensemble of power-law random banded matrices of size L × L is then defined as follows:

the matrix elements H
(1)
i,j are independent Gaussian variables of zero-mean H

(1)
i,j = 0 and of

variance

(
H

(1)
i,j

)2 = 1

1 +
( ri,j

b

)2a
. (2)

The most important properties of this model are the following. The value of the exponent
a determines the localization properties [27]: for a > 1 states are localized with integrable
power-law tails, whereas for a < 1 states are delocalized. At criticality a = 1, states become
multifractal [31–34] and exponents depend continuously on the parameter b, which plays a
role analogous to the dimension d in short-range Anderson transitions [31]: the limit b � 1
corresponds to weak multifractality (analogous to the case d = 2 + ε) and can be studied via
the mapping onto a nonlinear sigma model [27], whereas the case b � 1 corresponds to strong
multifractality (analogous to the case of high dimension d) and can be studied via Levitov
renormalization [31, 38]. Other values of b have been studied numerically [31–34]. The
statistical properties of the Landauer transmission for a single particle between the opposite
points L/2 and L have been studied in detail in our previous work [39] (results concerning
other scattering geometries can be found in [40]).

2.2. Transmission of two distinguishable particles, two bosons or two fermions

In this paper, we consider the two-particle model defined by the Hamiltonian

H(2) = H(1) ⊗ 1 + 1 ⊗ H(1). (3)

As stressed in [15, 17, 19–21] for the one-dimensional TIP model, the important observation
to characterize the two-particle transport properties is the Green’s function

GE2 ≡ 1

H(2) − E2
(4)

between doubly occupied sites along the diagonal r1 = r2. In our present notations concerning
the PRBM model (see figure 1), we will thus focus on the transmission

T2 ≡
∣∣∣∣
〈
L

2
,
L

2

∣∣∣∣GE2=0|L,L〉
∣∣∣∣
2

(5)

at zero energy E2 = 0 (center of the band). It is important to stress that even if there is
no explicit interaction in the Hamiltonian of equation (3), the two-particle Green’s function
cannot be factorized into one-particle properties [17, 20]. We will indeed find below non-
trivial properties for T2. As a comparison, one may also consider the transmission of one of
the two particles with the other held fixed (see equation (7) of [19])

T2,(1f ) ≡
∣∣∣∣
〈
L

2
, L

∣∣∣∣G|L,L〉
∣∣∣∣
2

. (6)
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3. Numerical results on the statistical properties of T2

3.1. Numerical procedure

We have used an exact diagonalization method, the one-particle PRBM model H(1), for the
localization transition critical value a = 1 and for the parameter b = 0.1 (equation (2)).
For each disordered sample, we note en the L eigenenergies (n = 1, 2, . . . , L) and φn(i) the
corresponding normalized eigenstates (i = 1, 2, . . . , L)

H(1)φn(i) = enφn(i). (7)

To compute the two-particle Green’s function, we now have to know the symmetry
properties with respect to the exchange of the two particles.

3.1.1. Two distinguishable particles (no symmetry conditions). For two distinguishable
particles, an orthonormal basis of eigenstates of H(2) is given by the following L2 states
labeled by two integers 1 � n � L and 1 � m � L

ψn,m(i, j) = φn(i)φm(j) (8)

of energy

En,m = en + em. (9)

The two-particle Green’s function at zero energy E2 = 0 then reads

GE2=0(i, j ; i ′, j ′) = −
L∑

n=1

L∑
m=1

ψ∗
n,m(i, j)ψn,m(i ′, j ′)

En,m

(10)

= −
L∑

n=1

L∑
m=1

φ∗
n(i)φ

∗
m(j)φn(i

′)φm(j ′)
en + em

. (11)

3.1.2. Two bosons (symmetry condition). An orthonormal basis of eigenstates is given by
the following L(L + 1)/2 symmetric states labeled by two integers 1 � n � m � L

ψB
n,n(i, j) = φn(i)φn(j) (12)

ψB
n,m(i, j) = φn(i)φm(j) + φm(i)φn(j)√

2
(13)

of energy given by equation (9).
The two-boson Green’s function at zero energy E2 = 0 then reads

GB
E2=0(i, j ; i ′j ′) = −

L∑
n=1

L∑
m=n

ψB∗
n,m(i, j)ψB

n,m(i ′, j ′)
en + em

. (14)

3.1.3. Two fermions (antisymmetry condition). An orthonormal basis of eigenstates is given
by the following L(L − 1)/2 antisymmetric states labeled by two integers 1 � n < m � L

ψF
n,m(i, j) = φn(i)φm(j) − φm(i)φn(j)√

2
(15)

of energy given by equation (9).
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The two-fermion Green’s function at zero energy E2 = 0 then reads

GF
E2=0(i, j ; i ′j ′) = −

L−1∑
n=1

L∑
m=n+1

ψF∗
n,m(i, j)ψF

n,m(i ′, j ′)
en + em

. (16)

For fermions where double occupancy is forbidden, we have modified the definitions of
equations (5) and (6) for the transmissions into

T F
2 ≡ |〈L/2, L/2 − 1|G|L,L − 1〉|2 (17)

and

T F
2,(1f ) ≡ |〈L/2 − 1, L|G|L − 1, L〉|2. (18)

The results given below correspond to sizes 50 � L � 2000, with corresponding statistics
of 5.107 � ns(L) � 1150 independent samples. To improve the statistics, we have considered,
for each disordered sample, the transmission T2 between the L/2 pairs of opposite points. All
results concern the zero-energy (E2 = 0) transmission T2 at the critical point a = 1 and the
value b = 0.1 (see equation (2)). We first focus on the scaling of the typical transmission
before we turn to the multifractal spectrum.

3.2. Typical transmission T
typ

2 (L) as a function of L

We find that the typical two-particle transmission

T
typ

2 (L) ≡ eln T2(L) (19)

decays as the power-law

T
typ

2 (L) ∝
L→∞

1

Lκ
typ
2

(20)

where

κ
typ
2 � 1.86 (21)

is the same for two distinguishable particles, two bosons or two fermions as shown in
figure 2.

As a comparison, we also show in figure 2 the typical transmission T
typ

2,(1f ) of
equation (6) representing the transmission of one of the two particles with the other held
fixed: for distinguishable particles, bosons or fermions, it is governed by the same exponent

κ
typ
2,(1f ) � 1.3 (22)

that coincides, within our error bars, with the exponent κ
typ
1 measured in [39] for the one-

particle model.

3.3. Multifractal statistics of T2

We find that the statistics of T2 is multifractal, i.e. that the probability to have T2(L) ∼ 1/Lκ

behaves as

Prob(T2(L) ∼ L−κ) dT ∝
L→∞

L�2(κ)dκ. (23)

We show in figure 3 the multifractal spectra �2(κ) corresponding to two distinguishable
particles, two bosons and two fermions. We find that the spectra for distinguishable particles
and bosons coincide, whereas the spectrum for fermions is clearly distinct, except around the
maximum �2

(
κ

typ
2

) = 0 associated with the same typical value κ
typ
2 of equation (21). This
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Figure 2. Scaling of the typical two-particle transmission T
typ

2 at criticality a = 1 for b = 0.1

and at zero-energy E = 0: ln T
typ

2 (L) ≡ ln T2(L) as a function of ln L for fermions (�), bosons

(©) and distinguishable particles (×) yield the same exponent κ
typ
2 � 1.86 (equation (21)). As

a comparison, the scaling of the typical transmission T
typ

2,(1f ) of equation (6) (representing the
transmission of one of the two particles with the other held fixed) corresponds to the exponent
κ

typ
2,(1f ) � 1.3 (equation (22)).

can be explained as follows: the transmission T2 for distinguishable particles and bosons
both involve coinciding points (equation (5)), whereas the transmission T2 for fermions
involves neighboring points (equation (17)). Besides their common typical scaling, one
expects differences in their statistics, because in critical phenomena, the product of two
neighboring fields has a non-trivial scaling dimension [42] (for instance in the Ising model,
the local energy density which is the product of two neighboring spins has its own scaling
dimension that cannot be obtained from the magnetization scaling dimension [42]).

As a comparison, we also show in figure 3 the multifractal spectrum �1(κ) describing the
statistics of the corresponding one-particle transmission T1. A natural question is of course
whether the multifractal spectrum �2(κ) can be related to �1(κ) or to the singularity spectrum
of one-particle eigenfunctions.

3.4. Discussion: relation with the statistics of one-particle eigenfunctions

We first recall the case of the one-particle transmission, before we turn to the analysis of T2.

3.4.1. Analysis of the one-particle transmission in terms of one-particle eigenfunctions. In
terms of the energies en and eigenfunctions φn of the one-particle model (equation (7)), the
one-particle zero-energy Green’s function reads

gE1=0(i; i ′) = −
L∑

n=1

φ∗
n(i)φn(i

′)
en

. (24)

6
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Figure 3. Multifractal spectra �2(κ) describing the statistics of the transmission T2 at criticality
a = 1 for b = 0.1 and at zero-energy E = 0: for two fermions (�), two bosons (©) and two
distinguishable particles (×). As a comparison, the multifractal spectrum �1(κ) describing the
statistics of the corresponding one-particle transmission is shown (�).

In the limit of large size L where the levels become dense, the zero-energy Green’s function
of equation (11) becomes

gE1=0(i; i ′) ∼ −Ld

∫
de ρ(e)

φ∗
e (i)φe(i

′)
e

(25)

which is dominated by the neighborhood of e = 0

gE1=0(i; i ′) ∼ −Ldφ∗
e=0(i)φe=0(i

′) (26)

so that the one-particle transmission scales as

T1(i, i
′) = |gE1=0(i; i ′)|2 ∼ L2d |φe=0(i)|2|φe=0(i

′)|2. (27)

When the distance |i − i ′| is of the order of the system size L, the weights |φe=0(i)|2 and
|φe=0(i

′)|2 can be considered as independent. Then the multifractal spectrum �1(κ) describing
the distribution of the one-point transmission

Prob (T1 ∼ L−κ) dT ∝
L→∞

L�1(κ)dκ (28)

can be written as (here with d = 1)

�1(κ � 0) = 2

[
f

(
α = d +

κ

2

)
− d

]
(29)

in terms of the singularity spectrum f (α) of zero-energy eigenfunctions (see more details in
[39, 41]).
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3.4.2. Analysis of the two-particle transmission in terms of one-particle eigenfunctions. We
now try to analyze the two-point transmission T2 for two distinguishable particles along the
same lines. In the limit of large size L where the levels become dense, the zero-energy Green’s
function of equation (11) becomes

GE2=0(i, i; i ′, i ′) ∼ −L2d

∫
de ρ(e)

∫
de′ρ(e′)

φ∗
e (i)φ

∗
e′(i)φe(i

′)φe′(i ′)
e + e′ (30)

which is dominated by the region e + e′ = 0

GE2=0(i; i ′) ∼ −L2d

∫
de ρ2(e)φ∗

e (i)φ
∗
−e(i)φe(i

′)φ−e(i
′) (31)

(where we have used the symmetry ρ(e) = ρ(−e) around the center of the band e = 0 for the
one-particle density of states). The two-particle transmission is then expected to scale as

T2(i, i
′) = |GE2=0(i; i ′)|2 ∼ L4d

∫
de ρ2(e)

∫
de′ρ2(e′)[φ∗

e (i)φ
∗
−e(i)φ

∗
e′(i)φ

∗
−e′(i)]

× [φe(i
′)φ−e(i

′)φe′(i ′)φ−e′(i ′)]. (32)

So we do not expect any simple expression for the multifractal spectrum �2(κ): firstly, T2

contains eigenfunctions of any energy e, and the singularity spectrum f (α) of one-particle
eigenfunctions depends continuously on the energy e (see more details in the appendix);
secondly, T2 involves complicated correlations of eigenfunctions of various energies (studies
of two-eigenfunctions correlations can be found in [43, 44]).

It is, however, natural to consider the simplest approximation: if the integrals in
equation (32) were dominated by e = 0 = e′, one would obtain a direct relation with
the one-particle transmission of equation (27)

T
approx(a)

2 (i, i ′) ∼ L4d |φe=0(i)|4|φe=0(i
′)|4 ∼ (T1(i, i

′))2. (33)

In particular, the typical exponent κ
typ
2 would read

κ
typ
2 = 2κ

typ
1 . (34)

Our numerical results described above (equations (21) and (22)) show that κ
typ
2 is in fact

much smaller than (2κ
typ
1 ). Our conclusion is thus that this simple approximation is very

unsatisfactory, and that correlations between one-particle eigenfunctions at various energies
play a major role in the two-particle transmission T2.

4. Conclusion

In this paper, we have studied numerically the statistical properties of the two-particle
transmission T2(L) in the non-interacting case, at the critical point of the PRBM model
where one-particle eigenfunctions are known to be multifractal. Our conclusion is that T2(L) is
multifractal i.e. the probability to have T2(L) ∼ 1/Lκ behaves as L�2(κ), where the multifractal
spectrum �2(κ) for fermions is different from the common multifractal spectrum concerning
distinguishable particles and bosons, because the double occupancy of a single site and the
occupancy of two neighboring sites have different statistics at criticality. However, in the three
cases, the typical transmission T

typ
2 (L) is governed by the same exponent κ

typ
2 , which is much

smaller than the naive expectation 2κ
typ
1 , where κ

typ
1 is the typical exponent of the one-particle

transmission T1(L). This suggests that T2(L) probes non-trivial correlations of one-particle
eigenfunctions of various energies.

8
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Figure 4. The multifractal spectrum �1(κ) describing the statistics of the one-particle transmission
(equation (28)) at criticality a = 1 and b = 0.1 for four values of the energy: e = 0 (©), e = 0.5
(�), e = 1 (�) and e = 2 (�).

Appendix. Multifractal statistics of the one-particle transmission as a function of energy

As first discussed in [41] for the special case of the two-dimensional quantum Hall transition,
the critical probability distribution of the one-particle transmission T1 at an Anderson transition
critical point takes the form of equation (28) where the multifractal spectrum �1(κ) can be
related to the singularity spectrum f (α) of critical eigenstates via equation (29).

For the PRBM model, numerical results on �1(κ) can be found in [39] at the critical point
a = 1 and at zero energy e = 0 for various values of the parameter b (equation (2)).

Here we show in figure 4 how the multifractal spectrum �1(κ) at criticality a = 1 for the
value b = 0.1 changes as a function of the energy e. In particular, the corresponding typical
values read

κ
typ
1 (e = 0) � 1.33

κ
typ
1 (e = 0.5) � 1.38

κ
typ
1 (e = 1) � 1.55

κ
typ
1 (e = 2) � 1.89

(A.1)

Via equation (29), this shows that the singularity spectrum f (α) of critical eigenfunctions
changes with the energy e. (The dependence on e of f (α) has been studied in [45] for
quantum Hall wavefunctions as a function of the Landau level.)

Since the zero-energy two-particle transmission T2 of equation (32) contains one-particle
eigenfunctions of various energies, that are characterized by different multifractal singularity
spectra, we do not expect any simple expression for the multifractal spectrum �2(κ) of T2.

9
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